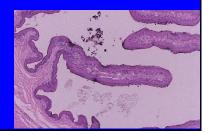
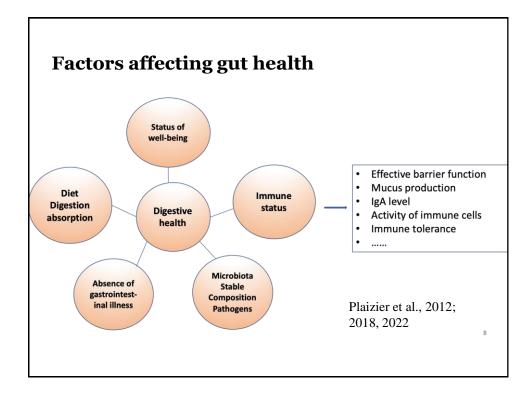


Enhancing gut health of dairy cows

J. C. (Kees) Plaizier

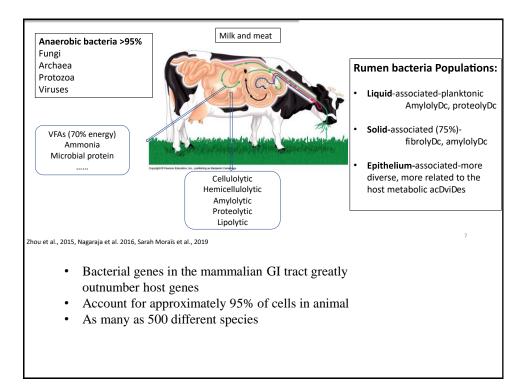
University of Manitoba, Canada

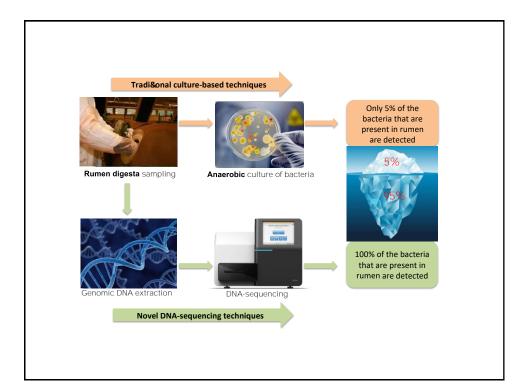

Gut health

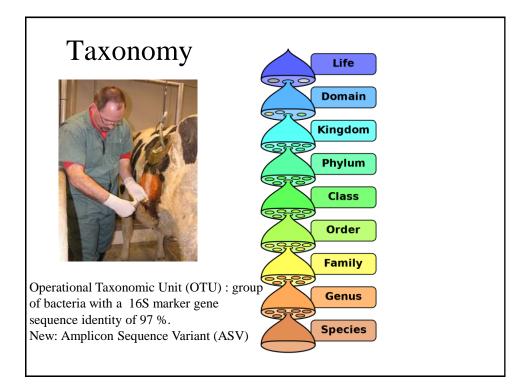

- Healthy digesta
 - Healthy chemical composition: pH, osmolality, redox potential, nutrients, low toxins
 - Healthy microbiota: high abundances and functionality of beneficial microbes, low abundances and functionality of pathogenic microbes
 - Healthy physical composition:
 - Structure

Gut health

- Healthy mucosa/epithelium
 - Absorption of nutrients
 - Barrier function
 - Immune response
- Motility

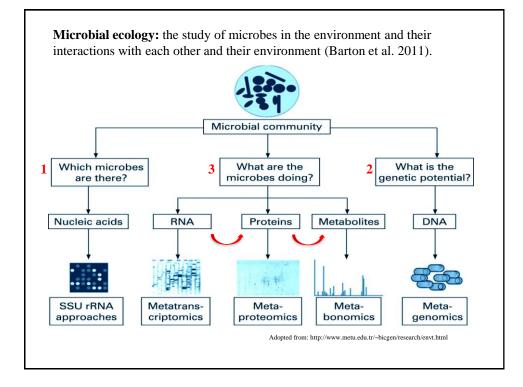


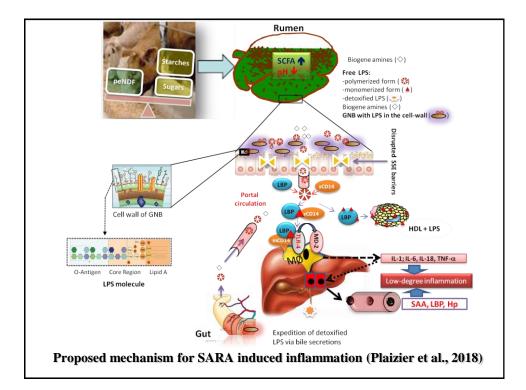

Causes of SARA on farms (Plaizier et al., 2018, 2022):


- Excess grain/starch in diet
- Ingested diet different from formulated diet.
 Mixing errors and sorting against coarse feed particles
- Insufficient coarse fiber/rumination/saliva
- Finely chopped silage and excessive mixing
- Low buffering capacity forages
 High protein forages (e.g. alfalfa/luzerne) more buffering capacity than low protein forages (e.g. corn/maize silage)
- Very digestible forages/pasture
 - Low NDF content and high moisture and sugar contents

Causes of SARA on farms (Plaizier et al., 2018, 2022):

- Insufficient absorption of VFA
 - Papillae take time to adapt to increased VFA production.
- Large meals rather than smaller meals
 - Empty feed bunk, competition at feed bunk
- Heat stress
- Susceptible cows/microbiota
- Combination of these and other factors
- Excessive grain feeding good model for SARA induction? – "Grain induced" SARA more severe than " forage induced SARA"


Table 1. The characteristics of predominant ruminal bacteria. Abbreviations are as follows: CU, cellulose; HC, hemicellulose; DX, dextrins; SU, sugars; ST, starch; PC, pectin; XY, xylans; L, lactate; S, succinate; GL, glycerol; AA, amino acids; OA, organic acids; H_2 , hydrogen; F, formate; CO_2 , carbon dioxide; A, acetate; E, ethanol; B, butyrate; L, lactate; P, propionate; Br, branched-chain volatile fatty acids; and CH₄, methane.


Species	Ruminal niche	Fermentation products
Fibrobacter succinogenes	CU	S, F, A
Ruminococcus albus	CU, HC	A, F, E, H ₂
Ruminococcus flavefaciens	CU, HC	S, F, A, H ₂
Eubacterium ruminantium	HC, DX, SU	A, F, B, L
Ruminobacter amylophilus	ST	S, F, A, E
Streptococcus bovis	ST, SU	L, A, F, E
Succinomonas amylolytica	ST	S, A, P
Prevotella ruminocola, albensis, brevis, and bryantii	ST, PC, XY, SU	S, A, F, P
Butyrivibrio fibrisolvens	ST, CU, HC, PC, SU	B, F, A, H ₂
Selenomonas ruminantium	ST, DX, SU, L, S	L, A, P, B, F, H,
Megasphaera elsdenii	l, su	P, A, B, Br, H ₂
Lachnospira multiparus	PC, SU	L, A, F, H ₂
Succinivibrio dextrinosolvens	PC, DX, SU	S, A, F, L
Anaerovibrio lipolytica	GL, SU	A, S, P
Peptostreptococcus anaerobius	AA	Br, A
Clostridium aminophilum	AA	A, B
Clostridium sticklandii	AA	A, Br, B, P
Wolinella succinogenes	OA, H ₂ , F	S
Methanobrevibacter ruminantium	H,, CÓ,, F	CH₄

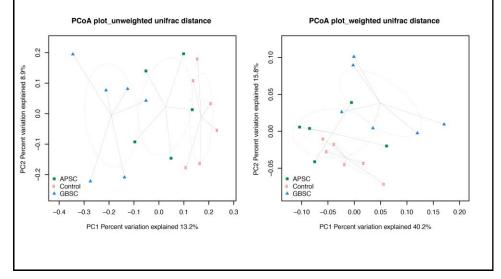
Microbiota

• Richness

- Total number of bacterial species (OTU/ASV)
- Diversity
 - $-\alpha$ -diversity: within group diversity
 - Measure of how many different species and how evenly distributed they are in the group.
 - Combines richness with the size (evenness) of populations
 - $-\beta$ -diversity: diversity among groups
 - Low α- diversity: more efficient or less robust? (Ben et al., 2016; Elolimy et al., 2000)

Possible inaccuracies of proposed mechanism for SARA induced inflammation

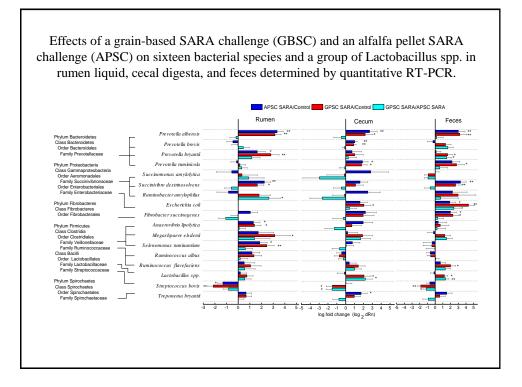
- Reduced barrier function of epithelia allows translocation of immunogenic compounds other than LPS and bioamines
- Endotoxin tolerance
- How toxic is LPS from common rumen bacteria?

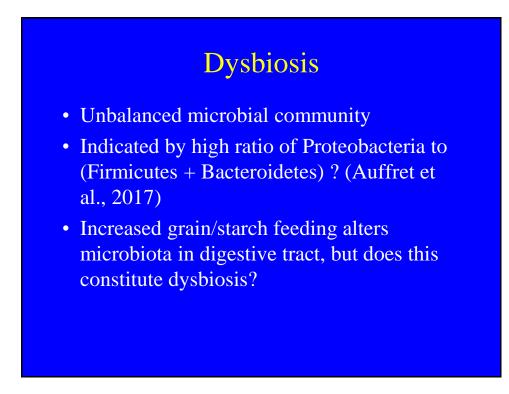

Item	Control	APSC	GBSC
Time < rumen pH 5.6, h/d	56 ^b	255ª	299 ^a
Cecum pH	7.07 ^a	6.86 ^b	6.79 ^b
Starch in hindgut, % of DM	2.8 ^b	2.6 ^b	7.4ª
Rumen LPS, EU/mL	8,333°	18,425 ^b	124,566ª
Cecal LPS, EU/mL	18,289 ^b	15,631 ^b	128,566 ^a
Fecal LPS, EU/mL	13,909 ^b	18,998 ^b	101,555ª
SAA, mg/L	38.1 ^b	35.5 ^b	62.1ª
Hp, mg/L	478 ^b	643 ^{ab}	864ª
LBP, mg/L	8.4 ^b	9.3 ^b	13.0 ^a

Effects of grain based SARA challenge (GBSC) and alfalfa pellet SARA challenge (APSC) on rumen pH, LPS, and acute phase proteins in blood of dairy cows

α-diversity in rumen fluid, and cecum digesta under control, alfalfa-pellet SARA challenge (APSC) or a grain-based SARA challenge (GBSC)

Sample type and	Number of OTU	Fisher ²	Richnes	s indices	Diversit	y indices	Effective number of species
treatment	(97% distance)	Tisher	Chao1	ACE	Shannon	Simpson	Simpson's reciprocal
Rumen fluid							
Control	1031 ^{aA}	854 ^{aA}	2540 ^A	2725 ^A	6.41 ^a	0.99	302 ^A
APSC	714 ^{abB}	450 ^{abB}	1514 ^{ав}	1630 ^{AB}	5.86 ^{ab}	0.99	136 ^{AB}
GBSC	618 ^{bC}	338 ^{bC}	1363 ^в	1579 ^в	5.07 ^b	0.96	56 ^в
Cecum digesta							
Control	1973	1102	3569	3728	6.81	1.00	312
APSC	1782	972	2948	3275	6.65	0.99	265
GBSC	1679	952	3722	3739	6.47	0.99	348


β-diversity: PCoA plots APSC, alfalfa-pellet SARA challenge; GBSC, a grain-based SARA challenge. Significance levels unweighted analysis, APSC vs. Control P = 0.01; GBSC vs. Control P < 0.01; GBSC vs. APSC P = 0.15. Significance levels weighted analysis, APSC vs. Control P = 0.22; GBSC vs. Control P < 0.01; GBSC vs. APSC P = 0.06.



Relative abundance of phyla (above 0.1% of community) in rumen fluid of dairy cows fed a control diet or on cows given an alfalfa pellet SARA challenge (APSC) or a grain-based SARA challenge (GBSC). Bacteria phyla were classified using V1–V3 16S rRNA gene pyrosequencing

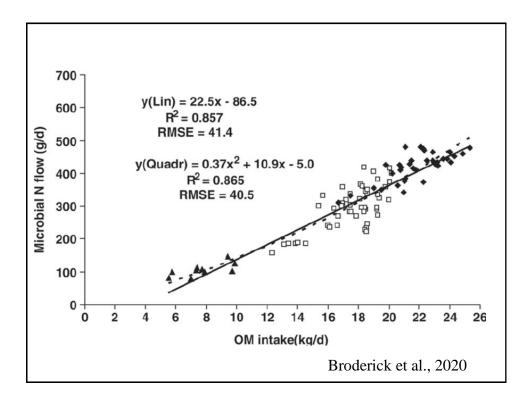
Dhavlo	Percenta	ge of sequer	nces in:	SEM	<i>P</i> -value
Phyla -	Control	APSC	GBSC	SEM	P-value
Bacteroidetes	48.9 ^a	49.6 ^a	41.9 ^b	2.3	< 0.01
Firmicutes	43.0	41.8	52.2	3.9	0.13
Spirochaetes	3.8	3.3	0.9	2.1	0.19
Tenericutes	1.1^{a}	0.9^{a}	0.4^{b}	0.1	< 0.01
Proteobacteria	0.56	0.73	0.30	0.21	0.16
Actinobacteria	0.37	0.26	3.24	1.96	0.58
Fibrobacteres	0.35	0.59	0.32	0.11	0.24
SR1	0.25^{aA}	0.14^{abB}	0.02 ^{bB}	0.05	0.02
Cyanobacteria	0.18^{abA}	0.32^{aA}	0.01 ^{bB}	0.08	0.01
TM7	0.10	0.06	0.14	0.06	0.29

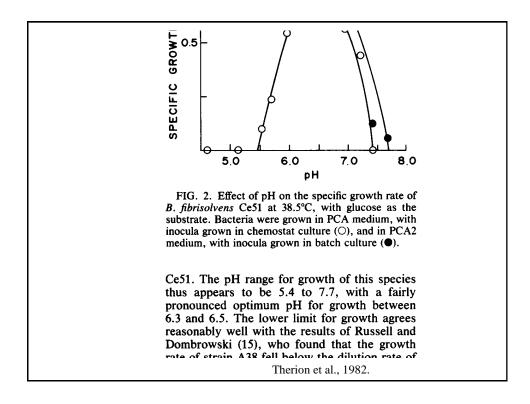
a, b, P < 0.05; A, B, P < 0.10

SARA in grazing cows

- In grazing cows, high-quality pastures with low NDF content and high moisture contents can cause ruminal pH depression (Westwood et al., 2003).
- Comparing grazing cows with rumen pH < 5.8 and those with rumen pH >5.8 (O'Grady et al. 2008):
 - No difference in milk yield, milk composition, rumen VFA, fecal consistency, and rumen fill
 - Threshold used was pH 5.8 using rumenocentesis, so any SARA?

SARA in grazing cows


- Low ruminal pH (range 5.6 to 6.8) in pasture-fed cows (Kolver and de Veth, 2002)
 - Higher microbial N flow from the rumen, total ruminal VFA (SCFA), milk yield and DMI
 - Lower milk fat percentage, fat:protein ratio, acetate:propionate ratio
 - Any SARA?
 - Low pH = high VFA = More rumen available energy for microbial growth?



Microbial protein

- Microbial protein supplies 60 to 85% of amino acids reaching the small intestine (SI) (Storm et al., 1983)
 Efficient?
- Optimal protein supply to the SI depends on adequate degradable protein providing N (ammonia, amino acids and peptides) as well as ENERGY for microbial growth.
- Enhancing the efficiency of microbial protein (microbial mass) production would improve utilization of dietary protein/N and reduce excretion of N.

g microbial DM (mol ATP) ^{-1a}	% of theoretical maximum ^b
11–21	34–66
7.5-16.7	23–52
10-25	31–78
	(mol ATP) ^{-1a} 11-21 7.5-16.7

Microbial protein

- Production of microbial protein is inefficient because microbes direct a proportion of available energy toward maintenance functions, synthesis of reserve carbohydrate, and energy spilling (Hackmann and Firkins, 2015).
- A reduction of the pH from 6.7 to 5.7 reduced *in vitro* protein microbial synthesis by 73% (Strobel and Russel, 1986).
- A reduction of the rumen pH depresses fibrolytic and proteolytic bacteria, but fermentation of starches and sugars remain very high.

Solutions?

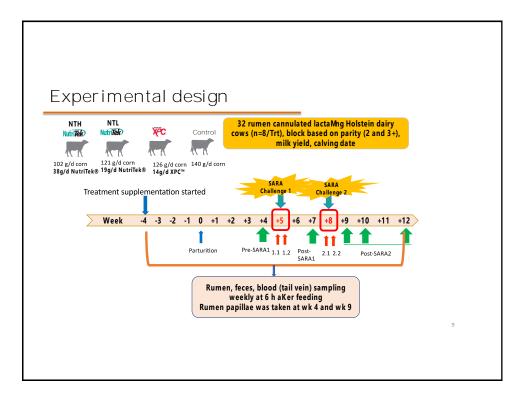
- Ensure that the composition of the ingested diet (especially coarse fibre and grain) resembles that of the formulated diet.
 - Prevent sorting and mixing errors (Miller-Cushon and DeVries, 2017)
- Allow multiple smaller meals rather than fewer large meals
 - Prevent empty bunks (de Vries, 2019).
 - Sufficient time/space at feed bunk (de Vries, 2019).
 - Avoid competition at the feed bunk (de Vries, 2019).
- Feed according to individual animal requirements
 - Precision feeding
 - How to assess individual requirements? (milk urea nitrogen MUN)?

Solutions?

- Feed the microbes!
- Yeast and yeast culture products, especially those derived from *Saccharomyces cerevisiae*, can stabilize the conditions in the foregut and hindgut of cattle during high grain feeding (Al Ibrahim et al., 2012; Chiquette et al., 2015; Li et al., 2016)
- Direct-fed microbials, e.g. *Enterococcus faecium* and *Lactococcus lactis*, and polyphenols, have also shown promise to attenuate SARA (De Nardi et al., 2014; Chiquette et al., 2015)
- Yeasts
 - Live
 - Dead
 - Yeast culture fermentation products (Dead yeast, remaining medium, metabolites)

Anaerobic fungi			
			,
Anaerovibrio lipolytica			
Butyrivibrio fibrisolvens		F	
Ciliate protozoa			
Escherichia coli	⊢	<u>}</u> i	
Fibrobacter succinogenes			-
Lactobacillus spp.	H	-	
Megasphaera elsdenii	H		
Prevotella albensis	H-H-H		
Prevotella brevis	Η		
Prevotella bryantii	⊢[-1	
Ruminococcus albus		P	
Ruminococcus flavefaciens		-	
Saccharomyces cerevisiae			
Selenomonas ruminantium			
Streptococcus bovis			
Succinimonas amylolytica	н		-
Succinivibrio dextrinisolvens			

Effects of a Saccharomyces cerevisiae fermentation product (SCFP) and grain-
based subacute ruminal acidosis (SARA) on biodiversity indices of bacterial
communities in rumen fluid

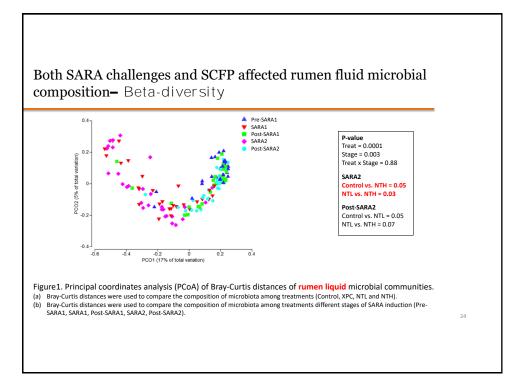

	Nos	SCFP	SCF	P			Significant	ce (P -value)
Item	Control	SARA	Control	SARA	SEM	SARA	SCFP	SARA *SCFP
Number of reads	2557	3927	3126	4697	833	0.10	0.44	0.91
Observed Species	197	128	196	174	14	0.01	0.14	0.12
Chao1	741	337	643	548	59	<.001	0.45	0.01
ACE	839	359	779	612	75	< 0.01	0.30	0.02
Shannon	5.88	4.91	5.88	5.53	0.19	< 0.01	0.17	0.06
Simpson	1.97	1.93	1.98	1.97	0.01	< 0.01	0.20	0.08
InvSimpson	63	22	65	50	11	< 0.01	0.22	0.19

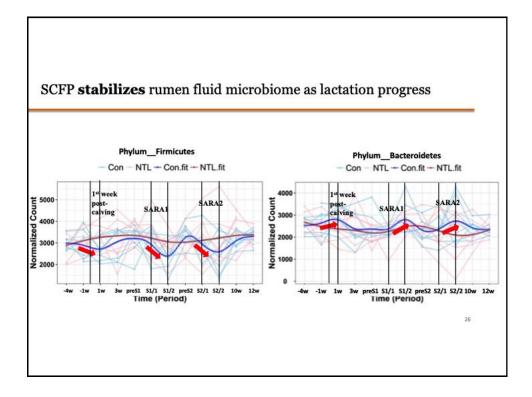
Source: Plaizier et al., 2016

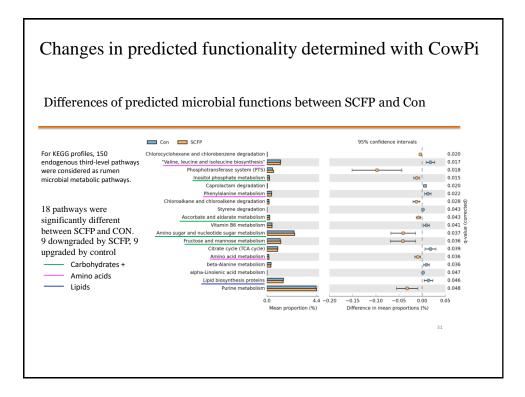
Effects of a *Saccharomyces cerevisiae* fermentation product (SCFP) and grain-based subacute ruminal acidosis (SARA) on the relative abundances of major phyla

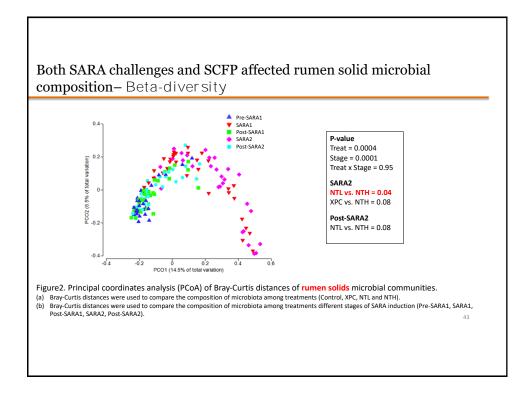
Phylum	NoS	CFP	SC	FP	SEM -	Sigr	ificance (P	-value)
Phylum	Control	SARA	Control	SARA	JEIVI -	SARA	SCFP	SARA * SCFP
				above	0.1% pop	ulation		
Bacteroidetes	46.84	20.78	40.57	32.49	3.72	< 0.01	0.44	0.02
Firmicutes	35.08	53.86	43.44	50.25	5.06	0.04	0.69	0.30
Proteobacteria	1.12	13.88	0.78	5.50	2.74	0.02	0.39	0.46
Spirochaetes	1.41	0.11	1.79	0.69	0.22	< 0.01	0.06	0.68
Tenericutes	1.85	0.45	1.84	1.06	0.24	< 0.01	0.24	0.22
Cyanobacteria	1.05	0.41	0.60	0.44	0.15	0.02	0.23	0.22
SR1	0.75	0.43	0.53	0.22	0.20	0.14	0.32	0.18
TM7	0.41	0.28	0.31	0.23	0.08	0.22	0.36	0.99
Verrucomicrobia	0.23	0.02	0.36	0.04	0.05	< 0.01	0.17	0.74

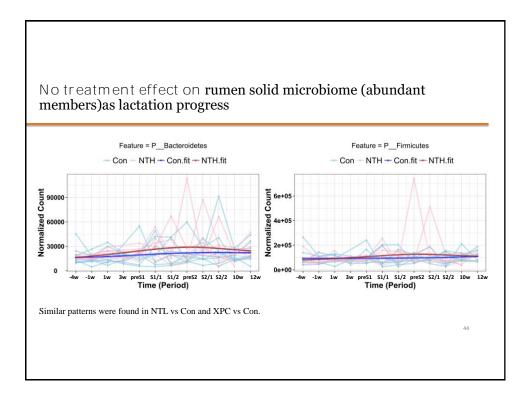
Source: Plaizier et al., 2016

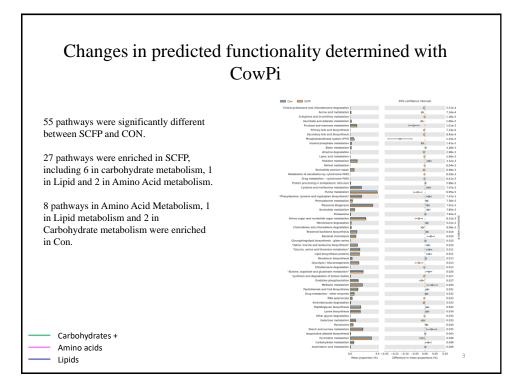

Table 4. Effe	ct of Saccharom	vces cerevisiae fe	rmentation pro	oducts (SCFP) tre	eatments (conti	rol. SCFPa.
		~	1	oducts (SCFP) tre dosis (SARA; pre	`	
SCFPb-1X, and	SCFPb-2X) by	stages of subac	1	dosis (SARA; pr	`	
SCFPb-1X, and	SCFPb-2X) by	stages of subac	ute ruminal aci	dosis (SARA; pr	`	1,
SCFPb-1X, and post-SARA1, S	l SCFPb-2X) by ARA2, and pos Treatment	stages of subac	ute ruminal aci men time < pH	dosis (SARA; pro 5.6.	e-SARA1, SARA	1, Effects
SCFPb-1X, and post-SARA1, S Stage	SCFPb-2X) by ARA2, and pos Treatment Control	stages of subac t-SARA2) on ru	ute ruminal aci men time < pH	dosis (SARA; pro 5.6.	e-SARA1, ŠARA - SEM	1, Effects P
SCFPb-1X, and post-SARA1, S Stage Pre-SARA1	I SCFPb-2X) by ARA2, and pos Treatment Control 7.1	stages of subac at-SARA2) on ru XPC 3.2	ute ruminal aci men time < pH	dosis (SARA; pr 5.6. NTH 6.3	e-SARA1, ŠARA - SEM 3.6	1, Effects P 0.60
SCFPb-1X, and post-SARA1, S Stage Pre-SARA1 SARA1	SCFPb-2X) by ARA2, and pos Treatment Control 7.1 228.4a	stages of subac t-SARA2) on ru XPC 3.2 183.1ab	ute ruminal aci men time < pH NTL 2.9 241.0a	dosis (SARA; pro 5.6. NTH 6.3 104.6b	e-SARA1, SARA - - SEM 3.6 64.1	1, Effects P 0.60 0.01
SCFPb-1X, and post-SARA1, S Stage Pre-SARA1 SARA1	I SCFPb-2X) by ARA2, and pos Treatment Control 7.1	stages of subac at-SARA2) on ru XPC 3.2	ute ruminal aci men time < pH	dosis (SARA; pr 5.6. NTH 6.3	e-SARA1, ŠARA - SEM 3.6	1, Effect: P 0.60
SCFPb-1X, and	SCFPb-2X) by ARA2, and pos Treatment Control 7.1 228.4a	stages of subac t-SARA2) on ru XPC 3.2 183.1ab	ute ruminal aci men time < pH NTL 2.9 241.0a	dosis (SARA; pro 5.6. NTH 6.3 104.6b	e-SARA1, SARA - - SEM 3.6 64.1	1, Effects <i>P</i> 0.60 0.01

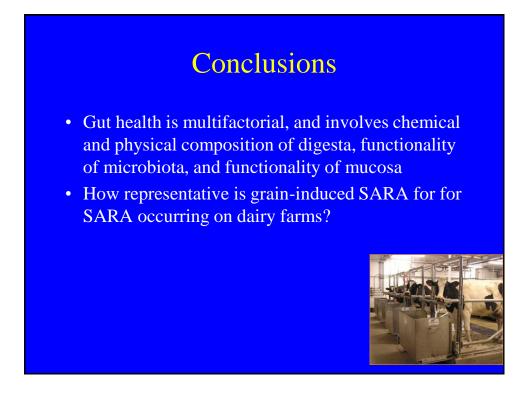

Note: Means with different lowercase letters (a and b) within SARA stage differ (P < 0.05). SEM, standard error of mean.


Effect of second challenge on rumen pH not more severe than first


Repeated SARA challenges


- Cows exposed to 3 1-day grain–based SARA challenges, each separated by 14 d (Dohme et al., 2008)
 - with each successive challenge, the rumen pH depression was more severe.
- Two 28 d grain-based SARA challenges separated by 6 d baseline and 6 d of grain adaptation (Qumar et al., 2008)
 - More severe rumen pH depression during second challenge





Conclusions

- At the bacterial phylum level the rumen microbiome appears robust to grain-induced SARA.
- At the bacterial species level, grain-induced SARA affects the abundances of many common rumen bacteria in ways reflecting changes in substrate availabilities and competition.

Conclusions

- Meta-genomics and meta-transcriptomics are needed to comprehensively study effects of dietary interventions on microbiota in the rumen.
- Feed supplements that attenuate adverse impact of high grain feeding, e.g. yeast and yeast culture products, are available.

Thank you for your attention

Questions/Vragen?

Plaizier@umanitoba.ca

