voor de Melkveehouderij U.A. # Healthy cows, fertile cows? Erwin de Heer 31-01-2019 # Fertility need a multifactorial approach... "Infertility problems in dairy cattle are multifactorial and are associated with both genetics and management. Individual cow factors relating to the age and health of the animals, the amount of feed consumed and how it is utilized internally (nutrient partitioning) influence their ability to conceive and remain pregnant." Wathes (2012) ### Fertility need a multifactorial approach... #### To breed - Fast resumption of regular estrus cycling #### To concieve - High oocyte quality → Prof Leroy - Uterine environment - Support conception - Support elongation of the embryo - Promote materal/foetal crosstalk #### To remain High progesterone #### Uterine disease - **Endometritis** - -16% preg rate (Fourichon, 2000) - -31% RR preg 150 days (Fourichon, 2000) - 118 days open (mean) vs 208 days (Gilbert, 2005) - Cytological endometritis → OR 0,65 preg after 1^e ins (Lee, 2018) - 0-14 days pp. positive endometrial cultures usually include: One or more from Trueperella Pyogenes Streptococcus spp. Pasteurella Multocida Staphylococcus spp. Pseudomonas spp. Clostridium spp. Fusobacterium spp. Bacteroides spp. (LeBlanc, 2008; Chapwanya et al., 2012). The cells of the endometrium express the specific receptor complex for detection of LPS, and LPS switches prostaglandin secretion from $F_{2\alpha}$ to E_2 , which likely disrupts luteolysis (Dobson, 2007) ## Oocyte quality and/or disease? | | | 1 | |----------|--------|---------| | Adjusted | mean + | - SEM 1 | | Item | No disease-AI | Disease-AI | No disease-ET | Disease-ET | | |-----------------------------------|----------------|-------------------|----------------------|-----------------|--| | Pregnant day 45 | 38.8 ± 1.8 | 31.0 ± 2.1 | 40.7 ± 1.7 | 35.9 ± 2.4 | | | Calving | 32.9 ± 1.7 | 22.2 ± 1.9 | 35.9 ± 1.7 | 28.2 ± 2.2 | | | Pregnancy loss | 12.4 ± 1.5 | 21.3 ± 3.1 | 11.1 ± 1.5 | 22.4 ± 3.4 | | | n=4206 cows
n(AI)=?
n(ET)=? | | | | | | | | | | | | | | | | Ribiero and Carva | lho (2017) Anim. Rep | or. 14 P589-600 | | ## Energy status predictive? TABLE 5: Suggested diagnostic values of plasma insulin-like growth factor-I (IGF-I) for predicting the fertility of multiparous, high-yielding dairy cows | Prediction | Plasma concen
One week
after calving | tration of IGF-I
At first
service | | |---------------------------------------|--|---|--| | Likely to conceive to first service | >25 ng/ml | >50 ng/ml | | | Unlikely to conceive to first service | <25 ng/ml | <50 ng/ml | | Taylor et al. (2004) Vet. Rec. 155 P583-588) # Example: High production, good repro figures - 10.220 kg avg, 4.32% Fat, 3.54% Protein, SCC 95 - Replacement (an) 23% - Peak-yield avg >45 kg/day - Calving interval 375 days - First insemination 75 days pp (avg) - VWP 60 days - Number of inseminations 2.09/inseminated cow ### NEFA are in question! - Plasma NEFA are markedly increased (> 700 mEq/L) following calving in almost all cows - 15-20% get clinical ketosis - What makes these cows more susceptible to ketosis? Baumgard (2017) ### Intriguing statements... - Association and correlation - No cause and effect - Infusing ketones or NEFA does not cause negative outcomes - Ketones do not decrease feed intake - Otherwise a starving animal would not have an appetite - Infusing ketones do not increase blood ketone levels - In late lactation ketone removal from the circulating pool is very rapid - Cannot recreate ketosis during established lactation - Using a feed-restriction model doesn't cause fatty liver and ketosis - Some females do not consume food after parturition - Ocean mammals Baumgard (2017) ### NEFA in human - Inflammation can compromise the liver's ability to export lipid and increases NEFA incorporation into hepatic triglycerides - Without high plasma NEFA - Acute phase proteins ↑ - Increased circulating LPS (Ma et al. 2008) ### Maternal recognition - Endotoxin (LPS) → Inhibit pulsatile LHsecretion (Suzuki, 2001) - INF-ß → decrease of LH secretion (Mc Cann, 2000) - TNF- α and INF- δ \rightarrow cytotoxicity in CL \rightarrow P4 \downarrow - Suboptimal Luteal function → Histotroph secretion ↓ → INF-τ → Maternal recognition (Robinson, 2008) ## Maternal recognition - TNF- α and IL-1ß \rightarrow secretion of PGF_{2 α} \uparrow (Hansen, 2004) - BUN $\uparrow \rightarrow$ Uterine PH $\downarrow \rightarrow$ secretion of PGF_{2 α} \uparrow (Tamminga, 2006) # SARA and systemische inflammation | | Rumen | | Plasma/Serum | | | | |---------------|---------|---------|--------------|---------|---------|---------| | | PH<5,6 | ΔLPS | ΔLPS | ΔSAA | Δ ΗΡ | ΔLBP | | Source (SARA) | (min/d) | (EU/mL) | (EU/mL) | (μg/mL) | (μg/mL) | (µg/mL) | | Alfalfa | 268 | +60,139 | 0 | -15,3 | -29 | -3,8 | | Grains | 279 | +47,579 | +0,52 | +269,2 | +479 | +34,9 | Khafipour et al (2009 A/B) ### Peripheral inflammation **Table 3** LPS concentration in rumen and plasma of dairy cows fed low concentrate (LC) and high concentrate (HC) | LPS concentration (EU/mL) | Treatment ^a | | | | | |---------------------------|------------------------|-------|------------------|---------|--| | | LC | HC | SEM ^b | p-Value | | | Rumen LPS | 47170 | 79040 | 7966.25 | <0.01 | | | Jugular vein Plasma LPS | 470 | 860 | 81.26 | < 0.001 | | ^aHC high concentrate diet, LC low concentrate diet, EU endotoxin unit ^bSEM Standard error of the mean between the two groups The LPS data were compared using Student's t-test between HC and LC groups P≤0.05 was considered significant Bilal et al. (2016) BMC Vet. Res. 12 P284-291