

voor de Melkveehouderij U.A.

Healthy cows, fertile cows?

Erwin de Heer 31-01-2019

Fertility need a multifactorial approach...

"Infertility problems in dairy cattle are multifactorial and are associated with both genetics and management.

Individual cow factors relating to the age and health of the animals, the amount of feed consumed and how it is utilized internally (nutrient partitioning) influence their ability to conceive and remain pregnant."

Wathes (2012)

Fertility need a multifactorial approach...

To breed

- Fast resumption of regular estrus cycling

To concieve

- High oocyte quality → Prof Leroy
- Uterine environment
 - Support conception
 - Support elongation of the embryo
 - Promote materal/foetal crosstalk

To remain

High progesterone

Uterine disease

- **Endometritis**
 - -16% preg rate (Fourichon, 2000)
 - -31% RR preg 150 days (Fourichon, 2000)
 - 118 days open (mean) vs 208 days (Gilbert, 2005)
 - Cytological endometritis → OR 0,65 preg after 1^e ins (Lee, 2018)
- 0-14 days pp. positive endometrial cultures usually include:

One or more from Trueperella Pyogenes

Streptococcus spp. Pasteurella Multocida Staphylococcus spp. Pseudomonas spp. Clostridium spp. Fusobacterium spp.

Bacteroides spp.

(LeBlanc, 2008; Chapwanya et al., 2012).

The cells of the endometrium express the specific receptor complex for detection of LPS, and LPS switches prostaglandin secretion from $F_{2\alpha}$ to E_2 , which likely disrupts luteolysis (Dobson, 2007)

Oocyte quality and/or disease?

		1
Adjusted	mean +	- SEM 1

Item	No disease-AI	Disease-AI	No disease-ET	Disease-ET	
Pregnant day 45	38.8 ± 1.8	31.0 ± 2.1	40.7 ± 1.7	35.9 ± 2.4	
Calving	32.9 ± 1.7	22.2 ± 1.9	35.9 ± 1.7	28.2 ± 2.2	
Pregnancy loss	12.4 ± 1.5	21.3 ± 3.1	11.1 ± 1.5	22.4 ± 3.4	
n=4206 cows n(AI)=? n(ET)=?					
		Ribiero and Carva	lho (2017) Anim. Rep	or. 14 P589-600	

Energy status predictive?

TABLE 5: Suggested diagnostic values of plasma insulin-like growth factor-I (IGF-I) for predicting the fertility of multiparous, high-yielding dairy cows

Prediction	Plasma concen One week after calving	tration of IGF-I At first service	
Likely to conceive to first service	>25 ng/ml	>50 ng/ml	
Unlikely to conceive to first service	<25 ng/ml	<50 ng/ml	

Taylor et al. (2004) Vet. Rec. 155 P583-588)

Example: High production, good repro figures

- 10.220 kg avg, 4.32% Fat, 3.54% Protein, SCC 95
- Replacement (an) 23%
- Peak-yield avg >45 kg/day
- Calving interval 375 days
- First insemination 75 days pp (avg)
 - VWP 60 days
- Number of inseminations 2.09/inseminated cow

NEFA are in question!

- Plasma NEFA are markedly increased (> 700 mEq/L) following calving in almost all cows
 - 15-20% get clinical ketosis
 - What makes these cows more susceptible to ketosis?

Baumgard (2017)

Intriguing statements...

- Association and correlation
 - No cause and effect
- Infusing ketones or NEFA does not cause negative outcomes
- Ketones do not decrease feed intake
 - Otherwise a starving animal would not have an appetite
- Infusing ketones do not increase blood ketone levels
 - In late lactation ketone removal from the circulating pool is very rapid
- Cannot recreate ketosis during established lactation
 - Using a feed-restriction model doesn't cause fatty liver and ketosis
- Some females do not consume food after parturition
 - Ocean mammals

Baumgard (2017)

NEFA in human

- Inflammation can compromise the liver's ability to export lipid and increases NEFA incorporation into hepatic triglycerides
 - Without high plasma NEFA
 - Acute phase proteins ↑
 - Increased circulating LPS

(Ma et al. 2008)

Maternal recognition

- Endotoxin (LPS) → Inhibit pulsatile LHsecretion (Suzuki, 2001)
- INF-ß → decrease of LH secretion (Mc Cann, 2000)
- TNF- α and INF- δ \rightarrow cytotoxicity in CL \rightarrow P4 \downarrow
 - Suboptimal Luteal function → Histotroph secretion ↓ → INF-τ → Maternal recognition (Robinson, 2008)

Maternal recognition

- TNF- α and IL-1ß \rightarrow secretion of PGF_{2 α} \uparrow (Hansen, 2004)
- BUN $\uparrow \rightarrow$ Uterine PH $\downarrow \rightarrow$ secretion of PGF_{2 α} \uparrow (Tamminga, 2006)

SARA and systemische inflammation

	Rumen		Plasma/Serum			
	PH<5,6	ΔLPS	ΔLPS	ΔSAA	Δ ΗΡ	ΔLBP
Source (SARA)	(min/d)	(EU/mL)	(EU/mL)	(μg/mL)	(μg/mL)	(µg/mL)
Alfalfa	268	+60,139	0	-15,3	-29	-3,8
Grains	279	+47,579	+0,52	+269,2	+479	+34,9

Khafipour et al (2009 A/B)

Peripheral inflammation

Table 3 LPS concentration in rumen and plasma of dairy cows fed low concentrate (LC) and high concentrate (HC)

LPS concentration (EU/mL)	Treatment ^a				
	LC	HC	SEM ^b	p-Value	
Rumen LPS	47170	79040	7966.25	<0.01	
Jugular vein Plasma LPS	470	860	81.26	< 0.001	

^aHC high concentrate diet, LC low concentrate diet, EU endotoxin unit ^bSEM Standard error of the mean between the two groups

The LPS data were compared using Student's t-test between HC and LC groups

P≤0.05 was considered significant

Bilal et al. (2016) BMC Vet. Res. 12 P284-291

