

Disturbances of the Potassium and Phosphorus Metabolism in Periparturient Dairy Cows

Walter Grünberg

Similarities between Potassium and Phosphorus

- Predominantly intracellular electrolytes
- Balance strongly dependent on oral intake
- Important losses through the mammary gland
- · Both associated with muscle function
- Disturbances of the electrolyte balance are common in periparturient dairy cows

• ...

Dissimilarities

- No storage form of potassium available in the body
 - Large reserves of phosphorus in bone
- Tight regulation of extracellular potassium concentration
 - Plasma [Pi] not tightly regulated
- Regulation of potassium homeostasis reasonably well understood
 - Poor understanding of mechanisms regulating the P homeostasis
- Symptoms of acute disturbances of the (extracellular) potassium homeostasis well defined
 - Relevance of hypophosphatemia controversially debated

Relevance of a Disturbed Electrolyte Balance in Periparturient Cows

- Hypokalemia
 - Membrane potential disturbances of excitable cells
 - Altered function of striated and smooth muscles
 - Altered cardiac function
 - Extracellular [K] sustained at expense of intracellular K?
- Hypophosphatemia
 - Relevance uncertain
 - Intracellular P balance is presumably more relevant
 - Intracellular P sustained at expense of extracellular P?

Regulation of the Extracellular Potassium Balance

· Counterregulation to hyperkalemia

- Compartmental shift of K into the cell
- Renal excretion
- Intestinal excretion

Counterregulation to hypokalemia

- Shift of K from intracellular to extracellular space
 - · Less efficient with less muscle mass
- Renal retention of K
 - Requires water and Na excretion
- Reduced [K] in milk

Hypokalemia in Sick Cows

Etiology not entirely understood

- Decreased feed intake
- Delayed gastrointestinal transit time
- Alkalosis
- Dehydration (Aldosterone)?
- latrogenic (glucose, rehydration, glucocorticoids...)

— ...

Iatrogenic Exacerbation of Hypokalemia

- Parenteral Dextrose Infusion
- Parenteral Hypertonic NaCl
 - Expect decline > 0.8 mmol/L with standard treatment
- Administration of NaHCO_{3 4,0}
- Large volumes of fluid
- Corticoids
-

Clinical Implications of Hypokalemia Preconvention Seminar 7: Dairy Herd Problem Investigation Strategies AMERICAN ASSOCIATION OF BOVINE PRACTITIONERS 36th Annual Conference, September 15-17, 2003 - Columbus, OH Hypokalemia, Muscle Weakness and Recumbency in Dairy Cattle (17 Cases 1991-1998) S. F. Peek BVSc. PhD, DACVIM T.J. Divers DVM DACVIM DACVECC C. Guard DVM PhD A. Rath DVM W.C. Rebhun DVM DACVIM DACVO Predef® 2X isoflupredone acetate Sterile Aqueous Suspension 2 mg per mL

Hypokalemic Recumbency

- Clinical presentation differs from milk fever
- Resembling botulism
 - Decreased tone of tongue- and head / neck muscles
 - "Rubber neck" / head on the ground
- Pronounced hypokalemia
 - → [K] < 2.0 mmol/L
- Frequently associated with cardiac arrhythmia
 - Atrial fibrillation

Subclinical Implications of Hypokalemia Hypokalemia and Abomasal Motility

Turck & Leonhard-Marek 2010

Mechanisms Presumed behind Periparturient Hypophosphatemia

- Loss of P through udder
- Decreased feed intake
- Decreased GI motility
- Hormonal adaptation
 - PTH
 - Cortisol
- Lag time of counter regulation
- ...

Incidence of Periparturient Hypophosphatemia

Metabolic Profiling of Clinically Healthy Dairy Cows

54% on the day of calving

Staufenbiel 2002

- Over 15% in the first 10 days of lactation
- 10% between 10 and 20 days of lactation

Macrae et al. 2006 Macrae et al. 2012

Incidence of Periparturient Hypophosphatemia

Hypophosphatemia,

54% on the first what 2/2 have mia, Metabolic Profiling of **Healthy Dairy Cows**

- Over 15% in the firs
- 10% between 10 and 20 days

Macrae et al. 2006 Macrae et al. 2012

Incidence of Hypophosphatemia in Recumbent Periparturient Dairy Cows

Electrolyte status		Study					
Ca	Р	Bostedt et al. 1973	Bostedt et al. 1979	Stolla 2000	Metzner and Klee 2005		
[Ca] ↓	[Pi] ↓	60,2%	67,5%	64,4%	62,4		
[Ca] ↓	[Pi] →	10,8%	12,1%	1,0%	4,1%		
[Ca] →	[Pi] ↓	18,2%	13,7%	28,7%	18,4%		
[Ca] →	[Pi] →	10,8%	6,7%	5,9%	15,1%		

Hypophosphatemia and Periparturient Recumbency

PR= Positive responders ADC= Alert Downer Cows Ménard and Thompson 2007

What Happens if Dairy Cows are <u>Transiently</u> P-Deprived?

Some experimental results of the past years....

What Happens if Dairy Cows are Transiently P-Deprived?

Make the difference between transient (acute) and chronic phosphate deficiency

Recommendation Standards for Dietary P in the Industrialized World

Lactation

		ι	JK		D	U:	SA	N	IL
Milk (kg/d)	DMI (kg/d)	g P/d	% DM						
15	17	56	0,33	46	0,27	51	0,30	40	0,24
25	20,3	77	0,38	65	0,32	65	0,32	55	0,27
35	23,6	99	0,42	84	0,36	83	0,35	69	0,29
45	26,9	121	0,45	103	0,38	96	0,36	83	0,31
55	30	142	0,47	121	0,40	114	0,38	97	0,32

modified from Pfeffer et al. 2005

Concerns with Transient P-Deficiency in Periparturient Cows

- Postparturient Hemoglobinuria
- Downer Cow Syndrome
- Disturbed liver function

Dietary P-Depletion of non-periparturient Dairy Cows

Pilot-Study on 10 past-peak Dairy Cows

- Fed a P-deficient diet for 5 weeks
 - Ration with 0.18 % P in DM
- Then supplemented with P for 2 weeks
 - Ration with 0.47 % P/in DM

Clinical Signs

- No altered demeanor
- No clinical disease
- No noticeable drop in feed intake or milk production
 - DMI: 20.4 \pm 2.5 kg DM/day
 - Milk: 23.6 ± 3.7 kg Milk/day
- No signs of muscle weakness
- No signs of anemia or hemolysis

Electromyography

- No apparent signs of muscle weakness
- EMG-results did not suggest energy deficiency (ATP or creatine phosphate-depletion)
- Increased occurrence of pathologic spontaneous activity (PSA) in muscle fibers
 - Suggestive membrane instability or neuromyopathy

Grünberg et al. 2015

Dietary P-Deprivation in Transition Dairy Cows

- Two groups
 - Group C
 - Group LP (low-phosphate)
- Study period from 6 weeks anteto 6 weeks post-partum
 - P-deficient diet for LP cows from 4 weeks a.p. to 4 weeks p.p.
 - 0.15 % P in DM antepartum
 - 0.20 % P in DM postpartum

Clinical Findings

- No abnormal demeanor until parturition
 - No disease occurrence
 - No feed intake depression
 - No signs of muscle weakness
- Periparturient period
 - Control: 4 /18 Cows with clinical hypocalcemia (stage I and II)
 - Group LP: Uneventful parturition, no clinical hypocalcemia, no recumbencies

Periparturient Calcium Balance in P-deprived Dairy Cows

Cohrs et al. 2018

Muscle Tissue Composition and Function

- No clinical signs of muscle function disturbance
- P-deprivation does not alter muscle tissue
 P, Pi, ATP, ADP, AMP or creatine phosphate
 content
- No biochemical indication of muscle cell damage
- Increased occurrence of pathological spontaneous activity (PSA) in muscle fibers

Postparturient Hemoglobinuria

- 5/18 P depleted cows
- Always in 2. week of lactation
- Duration 3 5 days

Postparturient Hemoglobinuria

Preliminary Conclusions

- Hemolysis occurred in narrow time window relative to calving
- Predisposition?
 - P-Deprivation seems to play a role
 - Other factors?
- Destruction of specific erythrocytes?
 - Cannot be controlled
 - After lysis of specific erythrocytes, normal regenerative activity even during sustained P-deprivation

Disturbances of the Potassium and Phosphorus Metabolism in Periparturient Dairy Cows Synopsis

Synopsis

- Homeostasis of phosphorus and potassium are both challenged in periparturient cows
 - Even more so in cows with feed intake depression
- Homeostatic disturbances may well be consequence rather than cause of a primary problem
- Clinical and subclinical effect of balance disorders for these electrolytes are poorly defined

Synopsis

- For both electrolytes increasing the supply in late gestation to prevent deficiencies in early lactation IS NOT an option
- Supplying these minerals (case by base basis) in cows off feed should be considered as supportive care treatment

Treatment Options

- For both minerals parenteral treatment is unsuitable for the field situation
 - Phosphorus
 - No products containing PO₄ commercially available
 - Bolus IV-infusion of PO₄-solutions short lived effect (and off label)
 - Potassium
 - Bolus IV-infusion not an option
 - Drip infusion requires constant monitoring of plasma [K]
- · Oral supplementation of both minerals is
 - safe
 - effective
 - (relatively) inexpensive

Solubility of Various Phosphate Salts

Pho	Solubility in g/100 g H ₂ 0 at 25 °C			
NaH ₂ PO ₄	Monosodium phosphate	94.9		
Na ₂ HPO ₄	Disodium phosphate	11.8		
CaHPO ₄	Dicalcium phosphate	0.043		
Ca(H ₂ PO ₄) ₂	Monocalcium phosphate	1.8		
KH ₂ PO ₄	Monopotassium phosphate	25.0		
K ₂ HPO ₄	Dipotassium phosphate	149.0		
MgHPO ₄	Magnesium phosphate	0,025		

Oral Treatment of Hypophosphatemia

Treatment recommendation: 50-60 g P orally every 12-24h in the form of:

- NaH₂PO₄ → 250-300 g (First choice)
- Na₂HPO₄ → 280-340 g
- KH₂PO₄ → 200-250 g (with concomitant hypokalemia)
- Ca(H₂PO₄)₂ → 200-240 g (less effective, but may provide Ca)
- CaHPO₄ → 300-330 g (unsuitable for rapid correction of hypophosphatemia)
- MgHPO₄ → 300-330 g (unsuitable for rapid correction of hypophosphatemia)

Oral Administration of Potassium

KCl as Bolus- or Drench

- Rapid onset (ruminal absorption)
- Safe to dose
- Duration of effect? Treatment interval?
- Avoid massive over dosage
 - Hyperkalemia
 - · Osmotic diarrhea
 - Mucosal irritation?

Oral KCI

Recommended Dosage

- Recommendations are mostly empirical!
- Mild / moderate Hypokalemia: 60-90 g/600 kg/ KCl
- Moderate / severe hypokalemia: 90-150 g KCl / 600 kg
- Avoid single doses > 250 g KCl / 600 kg
- Treatment interval: 8-12h?

Oral KCI

Pay Attention to Difference between K and KCl

- Approx. 50% of the mass of KCl is K!
 - \rightarrow x g KCl \approx x/2 g K
- Content of K on the label often given as amount K (NOT as KCl)
- To treat even mild hypokalemia a drench powder needs to contain at least 30 g K (or 60 g KCl) / dose

Recommendation Standards for Dietary P

Dry Cow

- 2.5 3.0 g/kg (0.25-0.30%) DM (US)
- 2.5 2.8 g/kg (0.25-0.28%) DM (D)
- 2.0 2.5 g/kg (0.20-0.25%)DM (NL)
- Ca:P ratio considered obsolete in bovine
- Avoid excess of P (> 4.2 g/kg DM in close-up)

P below 2.0 g kg/DM is probably deficient in the dry-cow ration

Dietary P-Deprivation in Transition Dairy Cows

Dietary P-content

- Acclimation (dry cow)
 - 2,8 g P/kg DM both groups
- Dry cow-period (4-5 weeks)
 - Group LP: 1,5g P/kg DM
 - Group C: 2,8g P/kg DM
- Early lactation (4-5 weeks)
 - Group LP: 2,0g P/kg DM
 - Group C: 4,2g P/kg DM
- Repletion (2 weeks)
 - 4,2g P/kg DM both groups

