

Mechanisms of calcium metabolism in the dairy cow; relation to hypocalcemia.

Jesse P. Goff, Iowa State University College of Veterinary Medicine, Ames, IA USA

EFFECTS OF HYPOCALCEMIA AND MILK FEVER ON DISEASE RESISTANCE

 Reduced feed intake → worsens negative energy balance

Ciste

- 2. Lack of muscle contraction
 - impairs teat sphincter closure
 - failure to expel contents of
 - uterus after calving

3. Reduction in Immune Cell Response to Stimuli

- Calcium is the "second messenger" of immune cells

<section-header>

Ca Dynamics The Day of Calving

Maintenance – 7-8 g Ca

First Colostrum – 7.5 Kg X 2.3 g Ca / kg = 17.25 g Ca

Within 45 min of colostrum removal- Ca uptake by mammary = $\frac{3}{4}$ of 17.25 = 10-12 g Ca

2nd milking removal at 12 hrs – mammary sequestered 11 g Ca plus additional 3 g Ca (8.7 kg X 1.7 g Ca / kg= 14.8 g Ca)

Within 45 min of second milk removal - Ca uptake by mammary for next milk is another 8- 10 g Ca.

Total Ca loss from blood between calving and 14 hrs after calving can be 50 g Ca.

Increase in Ca Demand the first half day after calving

50 g Ca (post-calving $\frac{1}{2}$ day) – 18 g Ca (precalving) =

~ 32 g Extra Ca that must be brought into blood to avoid hypocalcemia

Lactational osteoporosis

The need for calcium to support lactation causes a "disconnect" between the resorptive and reversal phases of the remodeling process. Mediated by PTH and perhaps PTH-rP (beyond first week of lactation?)!!

This occurs to some extent in all mammals even if diet calcium is adequate. PTH-rP made by mammary gland!!

This resorbed bone is not replaced until some later point when dietary calcium absorption is sufficient to sustain calcium requirements of milk production, growth etc. About 5 weeks in a cow. By that point 10-13% of skeletal Ca will have been removed.

The resorbed bone can be successfully replaced in late lactation!!?

Ca Homeostasis – How long does it take to react?

Kidney

PTH promotes Ca reabsorption from tubular fluid within minutes (but normally brings <1 g Ca into blood).

Renal production of 1,25-dihydroxyvitamin D. Plasma 1,25dihydroxyvitamin D can increase within 8*-16 hrs, and requires another 12-24 hrs for significant increase in proteins involved in Ca absorption to be produced.

Bone

Osteocytic Osteolysis – minutes to a few hours (~ 9 g Ca***)

Osteoclastic Resorption – 36-96 hr, depending on age of cow and diet . Can bring 800 – 1200 g Ca into blood

Why doesn't Ca Homeostasis work for all cows???

Aged cows lose vitamin D receptors in intestine

Aged cows have fewer sites of active bone resorption (fewer osteoclasts) capable of responding to PTH rapidly

BLOOD pH AFFECTS TISSUE RESPONSIVENESS TO PTH!

Cows fed high DCAD diets become alkalotic and fail to respont to PTH stimulation by increasing blood Ca and 1,25-(OH)2 Vit I production. THIS CAUSES SEVERE HYPOCALCEMIA

Acid-Base Physiology & Strong lons

All solutions must be electrically neutral ., ie. The number of + charges in a solution must equal the number of - charges in a solution.

Neutral solutions have an equal number of H^+ and OH^- particles in them. This results in a pH of 7.0

If K⁺ ions are added to the solution it necessitates a loss of H⁺ ions and a simultaneous increase in OH⁻ in the solution to achieve electroneutrality. The pH increases.

Diet Cation-Anion Difference (DCAD) & Acid-Base Status

Diet Cations (Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺, NH₄⁺) absorbed into the blood will alkalinize the blood

Diet Anions (Cl⁻, SO₄⁻⁻, PO₄⁻⁻) absorbed into the blood will acidify the blood.

NaCI has equal numbers of + and - charges

Both Na⁺ and the C^{I-} are absorbed into the blood with nearly 100% efficiency.

The blood gains an equal number of + and - charges. NO CHANGE in Electrical charge = NO CHANGE in pH!!!

Ca Cl₂ also has an equal number of + and – charges

The Cl⁻ is absorbed with nearly 100% efficiency into the blood. Less than 20% of the Ca in the salt is absorbed into the blood.

More – charges enter the blood than do + charges. **The blood becomes more negative necessitating a rise in H⁺ = lower pH = More acidic blood**

Minerals/DCAD for Close-up Diets

- Phos at .30-.35% , or lower???
- Mg at .4% to use passive absorption!!
- S between .22 and .4%
- Ca at .85-1.3% ??
- Na at .1-.12%
- K as close to 1% as possible
- Enough Chloride to \checkmark urine pH.

Minerals/DCAD for Close-up Diets

- Phos at .30-.35%
- Mg at .4% to use passive absorption!!
- S between .22 and .4%
- Ca at .85-1.3% ??
- Na at .1-.12%
- K as close to 1% as possible
- Enough Chloride to 🕹 urine pH.

Enough to bring urine pH between 6.2 and 6.8 the week before calving. (Jersey target= 5.8-6.2)

When urine pH is below 5.3 in the cows you may have caused an uncompensated metabolic acidosis = trouble!!!!!

Thumbrule To Get Started with Anions

% Chloride needed = % K - 0.5

Example -If diet K is 1.3% then bring diet to 0.8 % Cl and check urine pH to fine tune diet

Magnesium

Adult Ruminants absorb Mg across rumen wall ! Mg insoluble at rumen pH is NOT available.

- *Active transport* process efficient with low diet Mg BUT EASILY POISONED BY DIET K AND NITROGEN
- Second *passive transport* system exists, but requires high concentration of ionized Mg in rumen fluid to work

Keep diet Mg at 0.4% prepartum and early postpartum to take advantage of passive transport of Mg across rumen wall

MAKE SURE Mg Source is AVAILABLE to the cow. Finely ground, not overly calcined!

Testing Magnesium Oxide Availability

Weigh out 3 g MgO into large vessel.

Add 40 ml of 5% acetic acid (white vinegar) slowly!!

Cap container and shake well, shake again at 15 min. Check the pH at 30 min mark.

Vinegar will be pH 2.6-2.8!

The best MgO will bring the pH up to 8.2.

The worst to just 3.8.

pH is a log scale so this represents >10,000 fold difference in buffering action.

Lean, et al 2014 Meta-Analysis

Studies contrasted use of anion supplements vs controls. Anions had to be fed at least 21 days pre-calving for inclusion in study.

Utilized 15 published studies with 34 diet comparisons.

Cows fed anions produced an average of 1.13 kg more Fat corrected milk / day for first 65 days in milk (or 73 kg 1st 65 days).

Anions cost \$12 to \$22 / cow

Milk price = 0.33 USD/ liter X 73 kg in 65 days = 24.11 USD

Over whole lactation – use 318 kg figure (Beede) o.33 dollars/ L X 318 kg in 305 days = 104.94 USD

Relative risk Milk Fever has on other Disease Development in that lactation (Curtis et al 1985)

Ketosis – 23 fold increased risk (16 fold for RP)

All Mastitis – 5 fold increased risk

Coliform Mastitis - 11 fold increased risk

Retained Placenta – 4 fold increased risk

Reduced retained placenta, improved uterine health, less displaced abomasum, less mastitis? How many \$\$\$\$????